
2020 PERFORMANCE, PORTABILITY,
AND PRODUCTIVITY IN HPC FORUM

INVESTIGATION OF THE
PERFORMANCE OF SYCL KERNELS
ACROSS VARIOUS ARCHITECTURES

e r h t jh tyh y

BRIAN HOMERDING
Leadership Computing Facility
Argonne National Laboratory
Speaker

September 1st, 2020

OVERVIEW – SYCL [1]

§ Cross-platform abstraction layer for heterogeneous programming
§ Khronos standard specification
§ Builds on the underlying concepts of OpenCL while including the strengths of

single-source C++
§ Includes hierarchical parallelism syntax and separation of data access from data

storage
§ Designed to be as close to standard C++ as possible

2

3

Collection of performance benchmarks
with RAJA and non-RAJA variants.

§ Stream (stream)
ADD, COPY, DOT, MUL, TRIAD

§ Basic (simple)
DAXPY, IF_QUAD, INIT3, INIT_VIEW1D,
INIT_VIEW1D_OFFSET, MULADDSUB,
NESTED_INIT, REDUCE3_INT, TRAP_INT

§ LCALS (loop optimizations)
DIFF_PREDICT, EOS, FIRST_DIFF, HYDRO_1D,
HYDRO_2D, INT_PREDICT, PLANCKIAN

§ Apps (applications)
DEL_DOT_VEC_2D, ENERGY, FIR, LTIMES,
LTIMES_NOVIEW, PRESSURE, VOL3D

§ PolyBench (polyhedral optimizations)
2MM, 3MM, ADI, ATAX, FDTD_2D,
FLOYD_ARSHALL, GEMM, GEMVER, GESUMMV,
HEAT_3D, JACOBI_1D, JACOBI_2D, MVT

RAJA PERFORMANCE SUITE [2]

RAJA PERFORMANCE SUITE

§ Primary developer – Rich Hornung (LLNL)
– See RAJAPerf github page for full list of contributors

§ Very good for compiler testing

§ Built in timer and correctness testing.
– Timer cover full execution of many repetitions the kernels
– Correctness is done with checksum compared against sequential execution

§ Many “variants”
– Base_Seq, Lambda_Seq, RAJA_Seq, Base_OpenMP,
Lambda_OpenMP, RAJA_OpenMP, Base_OpenMPTarget,
RAJA_OpenMPTarget, Base_CUDA, RAJA_CUDA

4

RAJA PERFORMANCE SUITE

§ Primary developer – Rich Hornung (LLNL)
– See RAJAPerf github page for full list of contributors

§ Very good for compiler testing

§ Built in timer and correctness testing.
– Timer cover full execution of many repetitions the kernels
– Correctness is done with checksum compared against sequential execution

§ Many “Variants”
– Base_Seq, Lambda_Seq, RAJA_Seq, Base_OpenMP,
Lambda_OpenMP, RAJA_OpenMP, Base_OpenMPTarget,
RAJA_OpenMPTarget, Base_CUDA, RAJA_CUDA, Base_SYCL

5

OUTLINE - P3

§ Productivity
– Discuss experiences porting from CUDA

§ Portability
– Compiler correctness and support across various architectures

§ Performance
– Performance of various compilers for each architecture

Lessons learned

6

PRODUCTIVITY

PORTING FROM CUDA

8

• Memory
Management

• Kernel
Submission

• Kernel Code

• Argument
Passing

PORTING FROM CUDA

9

• Memory
Management

• Kernel
Submission

• Kernel Code

• Argument
Passing

PORTING FROM CUDA

10

• Memory
Management

• Kernel
Submission

• Kernel Code

• Argument
Passing

PORTING FROM CUDA

11

• Memory
Management

• Kernel
Submission

• Kernel Code

• Argument
Passing

PORTING FROM CUDA

12

• Memory
Management

• Kernel
Submission

• Kernel Code

• Argument
Passing

PORTABILITY

SYCL ECOSYSTEM

14

Image Credit [4]: https://github.com/illuhad/hipSYCL/blob/develop/doc/img/sycl-targets.png

COMPILERS

§ Intel SYCL [3]

– OpenCL + SPIRV for SKX and Gen9
– CUDA + PTX for V100

§ HipSYCL [4]

– CUDA for V100

§ ComputeCPP [5]

– OpenCL + SPIRV for SKX and Gen9
– OpenCL + PTX for V100

15

ARCHITECTURES

§ SKX – Intel Xeon Platinum Skylake 8180M Scalable processors

§ Gen9 – Intel Xeon Processor E3-1585 v5, with Iris Pro Graphics P580

§ V100 – NVIDIA V100 GPU

16

Processor DP Flop-rate (GF/s) DRAM (GB/s)
SKX 3,720 214

Gen9 300 28.8

V100 7,660 778

Measured performance [6]

FEATURE SUPPORT

§ Added extra boundary checks for kernels with buffers that are different size than
the iteration space

§ Syntactic sugar
– i.get_local_range(dim); -> i.get_local_range().get(dim);

§ Accessors with offset not fully supported, used pointer arithmetic
– auto x1 = d_x.get_access<read>(h, len, v1);
-> auto x = d_x.get_access<read>(h);

auto x1 = (x.get_pointer() + v1).get();

Workarounds for portability with current support

17

FEATURE SUPPORT

§ 3 Kernels with reductions are not included with our data
§ Support is not standard for 1.2 specification
§ 2020 specification additions of interests

– Floating point atomics
– Reductions
– Unified shared memory
– Lambda naming

Future support

18

CORRECTNESS

§ SKX - Intel SYCL
– Several small floating point differences, within expected bounds
– 1 incorrect result

§ Gen9 - Intel SYCL
– Several small floating point differences, within expected bounds

§ V100 – HipSYCL
– Several small floating point differences, within expected bounds

§ V100 – ComputeCPP
– 2 incorrect results, 2 miscompiled kernels

§ Everything else was exact match

Checksum compared to sequential execution

19

PERFORMANCE

SKX – STREAM GROUP (SEC)

21

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Stream_ADD Stream_COPY Stream_MUL Stream_TRIAD

Intel SYCL ComputeCPP

SKX – BASIC GROUP (SEC)

22

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Bas
ic_

DAXPY

Bas
ic_

IF
_Q

UAD

Bas
ic_

IN
IT

3

Bas
ic_

IN
IT

_V
IE

W
1D

Bas
ic_

IN
IT

_V
IE

W
1D

_O
FF

SET

Bas
ic_

M
ULA

DDSUB

Bas
ic_

NESTE
D_IN

IT

Intel SYCL ComputeCPP

SKX – LCALS GROUP (SEC)

23

0

0.5

1

1.5

2

2.5

3

3.5

4

Lcals_DIFF_PREDICT Lcals_EOS Lcals_FIRST_DIFF Lcals_HYDRO_1D Lcals_HYDRO_2D Lcals_INT_PREDICT Lcals_PLANCKIAN

Intel SYCL ComputeCPP

SKX – APPS GROUP (SEC)

24

0

0.5

1

1.5

2

2.5

3

Apps_DEL_DOT_VEC_2D Apps_ENERGY Apps_FIR Apps_LTIMES Apps_LTIMES_NOVIEW Apps_PRESSURE Apps_VOL3D

Intel SYCL ComputeCPP

SKX – POLYBENCH GROUP (SEC)

25

0

0.5

1

1.5

2

2.5

Poly
be

nc
h_

2M
M

Poly
be

nc
h_

3M
M

Poly
be

nc
h_

ADI

Poly
be

nc
h_

ATAX

Poly
be

nc
h_

FDTD_2
D

Poly
be

nc
h_

FLO
YD_W

ARSHALL

Poly
be

nc
h_

GEM
M

Poly
be

nc
h_

GEM
VER

Poly
be

nc
h_

GESUMM
V

Poly
be

nc
h_

HEAT_
3D

Poly
be

nc
h_

JA
COBI_

1D

Poly
be

nc
h_

JA
COBI_

2D

Poly
be

nc
h_

M
VT

Intel SYCL ComputeCPP

GEN9 – STREAM GROUP (SEC)

26

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Stream_ADD Stream_COPY Stream_MUL Stream_TRIAD

Intel SYCL ComputeCPP

GEN9 – BASIC GROUP (SEC)

27

0

0.2

0.4

0.6

0.8

1

1.2

Bas
ic_

DAXPY

Bas
ic_

IF
_Q

UAD

Bas
ic_

IN
IT

3

Bas
ic_

IN
IT

_V
IE

W
1D

Bas
ic_

IN
IT

_V
IE

W
1D

_O
FF

SET

Bas
ic_

M
ULA

DDSUB

Bas
ic_

NESTE
D_IN

IT

Intel SYCL ComputeCPP

GEN9 – LCALS GROUP (SEC)

28

0

0.2

0.4

0.6

0.8

1

1.2

Lcals_DIFF_PREDICT Lcals_EOS Lcals_FIRST_DIFF Lcals_HYDRO_1D Lcals_HYDRO_2D Lcals_INT_PREDICT Lcals_PLANCKIAN

Intel SYCL ComputeCPP

GEN9 – APPS GROUP (SEC)

29

0

0.2

0.4

0.6

0.8

1

1.2

Apps_DEL_DOT_VEC_2D Apps_ENERGY Apps_FIR Apps_LTIMES Apps_LTIMES_NOVIEW Apps_PRESSURE Apps_VOL3D

Intel SYCL ComputeCPP

GEN9 – POLYBENCH GROUP (SEC)

30

0

0.5

1

1.5

2

2.5

3

3.5

4

P
o
ly
b
e
n
c
h
_
2
M

M

P
o
ly
b
e
n
c
h
_
3
M

M

P
o
ly
b
e
n
c
h
_
A
D
I

P
o
ly
b
e
n
c
h
_
A
T
A
X

P
o
ly
b
e
n
c
h
_
F
D
T
D
_
2
D

P
o
ly
b
e
n
c
h
_
F
L
O
Y
D
_
W

A
R
S
H
A
L
L

P
o
ly
b
e
n
c
h
_
G
E
M

M

P
o
ly
b
e
n
c
h
_
G
E
M

V
E
R

P
o
ly
b
e
n
c
h
_
G
E
S
U
M
M

V

P
o
ly
b
e
n
c
h
_
H
E
A
T
_
3
D

P
o
ly
b
e
n
c
h
_
J
A
C
O
B
I_

1
D

P
o
ly
b
e
n
c
h
_
J
A
C
O
B
I_

2
D

P
o
ly
b
e
n
c
h
_
M

V
T

Intel SYCL ComputeCPP

V100 – STREAM GROUP (SEC)

31

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Stream_ADD Stream_COPY Stream_MUL Stream_TRIAD

Intel SYCL HipSYCL ComputeCPP

V100 – BASIC GROUP (SEC)

32

0

0.05

0.1

0.15

0.2

0.25

Bas
ic_

DAXPY

Bas
ic_

IF
_Q

UAD

Bas
ic_

IN
IT

3

Bas
ic_

IN
IT

_V
IE

W
1D

Bas
ic_

IN
IT

_V
IE

W
1D

_O
FF

SET

Bas
ic_

M
ULA

DDSUB

Bas
ic_

NESTE
D_IN

IT

Intel SYCL HipSYCL ComputeCPP

V100 – LCALS GROUP (SEC)

33

0

0.1

0.2

0.3

0.4

0.5

0.6

Lcals_DIFF_PREDICT Lcals_EOS Lcals_FIRST_DIFF Lcals_HYDRO_1D Lcals_HYDRO_2D Lcals_INT_PREDICT Lcals_PLANCKIAN

Intel SYCL HipSYCL ComputeCPP

V100 – APPS GROUP (SEC)

34

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Apps_DEL_DOT_VEC_2D Apps_ENERGY Apps_FIR Apps_LTIMES Apps_LTIMES_NOVIEW Apps_PRESSURE Apps_VOL3D

Intel SYCL HipSYCL ComputeCPP

V100 – POLYBENCH GROUP (SEC)

35

0

0.2

0.4

0.6

0.8

1

1.2

Poly
be

nc
h_

2M
M

Poly
be

nc
h_

3M
M

Poly
be

nc
h_

ADI

Poly
be

nc
h_

ATAX

Poly
be

nc
h_

FDTD_2
D

Poly
be

nc
h_

FLO
YD_W

ARSHALL

Poly
be

nc
h_

GEMM

Poly
be

nc
h_

GEMVER

Poly
be

nc
h_

GESUMMV

Poly
be

nc
h_

HEAT_
3D

Poly
be

nc
h_

JA
COBI_1

D

Poly
be

nc
h_

JA
COBI_2

D

Poly
be

nc
h_

MVT

Intel SYCL HipSYCL ComputeCPP

V100 – STREAM GROUP (SEC)
Size factor 5X

36

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Stream_ADD Stream_COPY Stream_MUL Stream_TRIAD

Intel SYCL HipSYCL Codeplay

V100 – BASIC GROUP (SEC)
Size factor 5X

37

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Bas
ic_

DAXPY

Bas
ic_

IF
_Q

UAD

Bas
ic_

IN
IT

3

Bas
ic_

IN
IT

_V
IE

W
1D

Bas
ic_

IN
IT

_V
IE

W
1D

_O
FF

SET

Bas
ic_

M
ULA

DDSUB

Bas
ic_

NESTE
D_IN

IT

Intel SYCL HipSYCL Codeplay

V100 – LCALS GROUP (SEC)
Size factor 5X

38

0

0.2

0.4

0.6

0.8

1

1.2

Lcals_DIFF_PREDICT Lcals_EOS Lcals_FIRST_DIFF Lcals_HYDRO_1D Lcals_HYDRO_2D Lcals_INT_PREDICT Lcals_PLANCKIAN

Intel SYCL HipSYCL Codeplay

V100 – APPS GROUP (SEC)
Size factor 5X

39

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Apps_DEL_DOT_VEC_2D Apps_ENERGY Apps_FIR Apps_LTIMES Apps_LTIMES_NOVIEW Apps_PRESSURE Apps_VOL3D

Intel SYCL HipSYCL Codeplay

V100 – POLYBENCH GROUP (SEC)
Size factor 5X

40

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Poly
be

nc
h_

2M
M

Poly
be

nc
h_

3M
M

Poly
be

nc
h_

ADI

Poly
be

nc
h_

ATAX

Poly
be

nc
h_

FDTD_2
D

Poly
be

nc
h_

FLO
YD_W

ARSHALL

Poly
be

nc
h_

GEMM

Poly
be

nc
h_

GEMVER

Poly
be

nc
h_

GESUMMV

Poly
be

nc
h_

HEAT_
3D

Poly
be

nc
h_

JA
COBI_1

D

Poly
be

nc
h_

JA
COBI_2

D

Poly
be

nc
h_

MVT

Intel SYCL HipSYCL Codeplay

PREVIOUS WORK

“Evaluating the Performance of the
hipSYCL Toolchain for HPC Kernels on
NVIDIA V100 GPUS” [7]

§ Conclusion
– SYCL using hipSYCL is showing

competitive performance to CUDA
on NVIDIA devices

§ Percent speedup of SYCL variant
relative to the CUDA variant for kernel
timings using nvprof

41

SYCLcon 2020

CONCLUSIONS

§ Good ecosystem
– Multiple compilers for each device

§ Portable code
– Minor feature support issues

§ Performance is good across compilers

§ More variance in compiler performance as complexity increases
– Good to be able to test performance with various compilers

42

ACKNOWLEDGEMENTS

§ ALCF, ANL and DOE
§ ALCF is supported by DOE/SC under contract DE-AC02-06CH11357
§ This research was supported by the Exascale Computing Project (17-SC-20-

SC), a collaborative effort of two U.S. Department of Energy organizations
(Office of Science and the National Nuclear Security Administration) responsible
for the planning and preparation of a capable exascale ecosystem, including
software, applications, hardware, advanced system engineering, and early
testbed platforms, in support of the nation’s exascale computing imperative.

§ We gratefully acknowledge the computing resources provided and operated by
the Joint Laboratory for System Evaluation (JLSE) at Argonne National
Laboratory.

REFERENCES
[1] Khronos OpenCL Working Group SYCL subgroup. 2018. SYCL Specification.
[2] Richard D. Hornung and Holger E. Hones. 2020. RAJA Performance Suite.

https://github.com/LLNL/RAJAPerf
[3] Intel SYCL. https://github.com/intel/llvm/tree/sycl.
[4] Aksel Alpay and Vincent Heuveline. 2020. SYCL beyond OpenCL: The architecture, current state and

future direction of hipSYCL. In Proceedings of the International Workshop on OpenCL (IWOCL ’20).
Association for Computing Machinery, New York, NY, USA, Article 8, 1.
DOI:https://doi.org/10.1145/3388333.3388658

[5] Codeplay. ComputeCPP. https://developer.codeplay.com/products/computecpp/ce/home/
[6] C. Bertoni et al., "Performance Portability Evaluation of OpenCL Benchmarks across Intel and NVIDIA

Platforms," 2020 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), New Orleans, LA, USA, 2020, pp. 330-339,
DOI:https://doi.org/10.1109/IPDPSW50202.2020.00067

[7] Brian Homerding and John Tramm. 2020. Evaluating the Performance of the hipSYCL Toolchain for HPC
Kernels on NVIDIA V100 GPUs. In Proceedings of the International Workshop on OpenCL (IWOCL ’20).
Association for Computing Machinery, New York, NY, USA, Article 16, 1–7.
DOI:https://doi.org/10.1145/3388333.3388660

44

https://github.com/LLNL/RAJAPerf
https://github.com/intel/llvm/tree/sycl
https://doi.org/10.1145/3388333.3388658
https://developer.codeplay.com/products/computecpp/ce/home/
https://doi.org/10.1145/3388333.3388660

THANK YOU

